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Abstraet 

A generalization of a previously described Gaussian 
growth-disorder model is described. The properties of 
this general model are discussed in relation to the more 
restricted but more easily simulated growth-disorder 
model. Optical diffraction patterns of realizations 
obtained by Monte Carlo procedures are presented for 
two possible applications of the model. The extra 
degree of freedom provided by the generalization 
enables a greater diversity of diffraction patterns to be 
achieved. In particular, it is possible to produce 
realizations having an approximately isotropic corre- 
lation field. The relationship between the Gaussian 
model and the Hosemann paracrystal is discussed. 

1. Introduction 

In previous papers (Welberry, 1977; Welberry, Miller 
& Pickard, 1979; Welberry, Miller & Carroll, 1980; 
Welberry & Carroll, 1982), we have described a series 
of stochastic models of disorder called 'growth-dis- 
order models', which enable the rapid production of 
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optical diffraction masks representing disordered lat- 
tices. Such diffraction masks have been the principal 
tool in a number of studies of disorder phenomena 
reported recently, including orientational disorder in 
molecular crystals (Welberry, Jones & Epstein, 1982), 
cation framework distortions in materials with ferro- 
electric properties (Welberry, 1982), and highly dis- 
ordered lattices known as paracrystals which are used 
in the study of polymers and amorphous materials 
(Welberry, Miller & Carroll, 1980). 

The efficacy of the growth-disorder models for the 
purpose of optical diffraction mask making relies on the 
simple and rapid growth algorithm which enables 
suitably large realizations of disordered lattices con- 
taining predetermined short-range-order properties to 
be produced. The disordered distributions which may 
be produced by this means are, however, not the most 
general possible on a given lattice, and often approxi- 
mations to the desired distribution must be made. 
Access to realizations of more general distributions can 
only be obtained via lengthy Monte Carlo iterative 
procedures and for routine usage such methods are not 
feasible. In this paper we explore some aspects of the 
relationship between a growth-disorder model and its 
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234 FURTHER PROPERTIES OF A GAUSSIAN MODEL OF DISORDER 

more general counterpart, with a view to assessing the 
extent of the approximation made in using growth- 
disorder models to describe observed disorder 
phenomena. 

Although our early interest was in binary models, 
since many disorder problems are naturally expressed 
in terms of binary variables, the most generally useful 
model developed to date is one which uses a multi- 
variate Gaussian representation of lattice distributions. 
Versions of this model applicable to three (3D) or 
higher dimensions are just as readily used as the basic 
2D model (Welberry & Carroll, 1982). Moreover, a 
method of converting Gaussian to binary variables was 
reported and this allows wide application of the model. 

The 2D version of this Gaussian model, first 
described in the context of paracrystalline lattices 
(Welberry, Miller & Carroll, 1980), is formulated in 
terms of the probability of the four local variables X A, 
X B, X c, X o at the corners of the unit square (see Fig. 1). 
The most general probability density for these variables 
is P ( X  A, X 8, X c, Xo), which may be factorized using 
conditional probabilities: 

P(XA,XB,Xc,XD) = P(XA) P ( X J X A )  P(Xc/XA,XB)  

× P(XD/XA,XB,Xc).  (1) 

The special case of this which corresponds to a 
growth-disorder model occurs when 

P ( X c / X A , X n ) =  P(Xc/XA) ,  (2) 

i.e. when X c is conditionally independent of X B given 
X A. When this condition is satisfied realizations may be 
grown in the way described by Welberry & Carroll 
(1982). These general considerations are applicable 
whether X is a binary, Gaussian or any other type of 
random variable. 

For P ( X  A, X B, X c, X o) having rectangular (pmm) 
symmetry, the growth-disorder model has three degrees 
of freedom and distributions may be obtained for which 
the lattice averages 

i-2--( 

i÷1 ( 

j-2 j-1 j+l 

Fig. 1. Lattice-site labelling for the 2D Gaussian model. For the 
growth-disorder special case, realizations may be obtained in the 
manner indicated by adding points one at a time using equations 
(I) and (2). 

(x,=i> 
r =  <Xi , jX i+ l , j> /a  2 (3) 

S = <Xi, j Xi, j + 1>/o .2 

may be chosen independently. Here ( )  denotes the 
average over the population of Gaussian models. We 
can also evaluate it as the average over all values of i 
and j, using only one realization of the model. The 
averages in (3) represent a single-site distribution and 
two inter-site correlation coefficients between nearest- 
neighbouring points along the axial directions. It is a 
property of all such symmetric growth-disorder models 
that the diagonal correlation coefficient t = 
<Xi, j X i+ 1,j+ 1)/0.2 is the product of the primary axial 
correlations r and s. This property stems directly from 
the conditional independence relation (2) and the 
removal of that condition allows t to vary independent- 
ly. One of the main purposes of the present work is to 
explore the significance of variations of t for the 
diffraction properties of the model. 

A second related feature of the growth-disorder- 
model formulation that is perhaps less than satis- 
factory is the asymptotic behaviour of the correlation 
coefficients at large distances. The form of the general 
correlation coefficient is given by 

Pro., = rim' s'~' (4 )  

so that it is apparent that correlations fall to zero more 
rapidly along diagonal directions than along the axes. 
Such a property is not the case, for example, for the 
Ising model near its critical temperature, where a much 
greater degree of isotropy occurs (Cheng & Wu, 1967). 

In a previous paper we also described the relation- 
ship between a Gaussian growth-disorder model and 
the paracrystal model (see Hosemann & Bagchi, 1962) 
of highly distorted lattices used by workers in the area 
of polymers and amorphous materials. It is evident in 
that field that the lack of isotropy of the correlation 
field for the 'ideal paracrystal' is of concern (see 
BrS.mer & Ruland, 1976) and attempts to improve the 
isotropy by the introduction of the 'real paracrystar do 
not appear to offer a solution to this problem. More 
recently Hosemann (e.g. Hosemann, Vogel, Weick & 
Balt~.-Calleja, 1981) has made use of the so-called a* 
law to overcome some of the problems of the 
paracrystal concept. This essentially turns the 'para- 
crystal' into an inhomogeneous model where 'grains' of 
distorted lattice are allowed to grow to a relatively 
small finite limit with the distortions increasing towards 
the boundaries. This may offer a more realistic solution 
to practical problems in this area where homogeneity is 
not necessarily a requirement. It is, however, still of 
interest to explore the properties of a homogeneous 
model, if only to justify the necessity to discard it for 
use in this context. 
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In the sections that follow we develop the theory of a 
general Gaussian model with emphasis on those 
aspects mentioned above, and illustrate these with 
sample realizations obtained by Monte Carlo methods. 
The number of sample realizations has of necessity 
been kept to a minimum because of the considerable 
computational effort required to obtain realizations of 
sufficient size to give reasonably noise-free optical 
diffraction patterns. 

2. The general 2D Gaussian model on a square lattice 

We discuss in this paper the general case of the 
Gaussian model which was formulated in a previous 
paper (Welberry & Carroll, 1982). The growth-dis- 
order-model special case of this model was discussed in 
detail in that paper and some aspects pertaining to the 
paracrystal problem in an earlier paper (Welberry, 
Miller & Carroll, 1980). We refer the reader to these 
papers for details of the formulation but here recall that 
Xt, j is a Gaussian-distributed random variable at the 
site i,j of a square lattice of N sites wrapped around a 
torus, and the multivariate probability density of these 
variables is given as 

exp[-½ ~ X~(V-~),,~ X~ ] 
P= 

(2x)m2(det  V) 2/2 

= (exp{--½ Y. ~, Xt,.t[AXt,.t + 2BXt+,,j + 2CXtd+l 
i J 

+ 2D(Xi+,,j-2 + Xi+Lj+,)]I) 

× [(2n)N/2(det V)I/2] -1, (5) 

where V is the variance-covariance matrix. A must be 
positive in order to have a total probability that can be 
normalized to unity. This Gaussian probability density 
was treated briefly by Moran (1973b) in a paper that 
examined Markov processes on a square lattice. The 
particularly simple form of the inverse matrix V -1 
given by (5) arises because of the assumptions of 
translational invariance of the statistical properties, of 
the (pmm) symmetry of the multi-variate distribution, 
and that only interactions between nearest neighbours 
along axial and diagonal directions are non-zero. The 
lattice averages 0.2, r, s, t were defined in § 1 in terms of 
elements of the variance-covariance matrix V. We 
show that specification of these four primary lattice 
averages allows the determination of the parameters A, 
B, C, D in the probability density (5), and vice versa. 
After computation of A, B, C, D, (5) may be used to 
obtain further properties of the model via Monte Carlo 
simulations or analytical calculations. 

The formulae for 0.2, r, s, t in terms of A, B, C, D are 
obtained by inverting V -2, an N x N matrix specified 
by (5). This inversion is greatly simplified by the 
translational invariance, which determines the form of 
the eigenvectors. The process of inversion is described 
by Moran (1973a). The eigenvalues of V -1 are A + 
2B cos 2 + 2C cos/2 + 4D cos 2 cos/2, where 2 and/2 
are index variables that change only in discrete steps. 
The matrix elements of V are the variances and 
covariances (Xi, j Xi,,j,), which depend only on m = 
i - i' and n = j -  j ' ,  because of the translational 
invariance. This general matrix element is equal to 

(XmnXoo) = 0.2 pm,n 

1 
= ~ X X exp(im2 + in~2) (.4 + 2B cos 2 

I m 

A u 

+ 2C cos/2 + 4D cos 2 cos/2)-2, 

(6) 

where i is now the imaginary unit, and the sums run 
over all allowed values of 2 and/2. When the number of 
rows and the number of columns in our lattice both 
tend to infinity, we obtain a double integral as the limit 
of(6). 

As particular cases of this result, the primary lattice 
averages are given by 

0 . 2 = f [ I  d2d/2 
(2702 

× ( A + 2 B c o s 2 + 2 C c o s / 2  
+ 4D cos 2 cos/2)-2, (7) 

0.2 r = ~ cos 2 

x (A + 2 B c o s 2 + 2 C c o s / 2  
+ 4D cos 2 cos/2)-1, (8) 

f ~  d2d/2 0.2S = ~ COS/2 

w T t  

x 
+ 

0.2 t ---: y f  
- - T t  

x 

+ 

(A + 2B cos 2 + 2C cos/2 
4D cos 2 cos/2)-1, 

d2 d/2 
cos 2 cos/2 

(A + 2B cos 2 + 2C cos/2 
4D cos 2 cos/2)-1. 

(9) 

(10) 

These four equations provide the basis for com- 
putation of A, B, C, D as functions of 0 "2, r, s, t. 

Our multivariate Gaussian distribution exists only if 
the parameters r, s, t or A, B, C, D lie within certain 
bounds. We consider first the four-variable Gaussian 
distribution for variables associated with an elementary 
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unit square in the lattice. Their va r iance-covar iance  
matr ix is 

r s 

lr 1 t s 
a 2 

t 1 r 

s r 1 

(11) 

and we assume that  a 2 is positive. The four-variable 
Gauss ian  probabil i ty density can be normalized to 
unity only if this matrix has positive eigenvalues. This 
requires r, s, t to lie between - 1  and +1, and the 
determinant  of  (11) to be positive. Since the deter- 
minant  factors into linear functions, the conditions on r, 
s, t become 

l + r + s + t > O  

l + r - s - t > O  
(12) 

1 - - r + s - - t > O  

1 - - r - - s + t > O .  

The point having Cartesian coordinates (r,s,t) must  lie 
inside a certain tetrahedron. Condit ions that must  be 
satisfied by A, B, C, D are derived similarly, from the 
requirement that (5) can be normalized to unity. We 
must  have 

A + 2 B c o s 2 + 2 C c o s ~ t + 4 D c o s 2 c o s g t > 0  (13) 

for all allowed values of 2 and ~t. The distinction 
between allowed values and real values is negligible 
when the lattice is suffÉciently large, and the conditions 

A + 2 B + 2 C + 4 D > 0  

A + 2 B - - 2 C - - 4 D > 0  
(14) 

A -- 2B + 2 C -  4D > 0 

A - 2 B - -  2C + 4 D  > 0 

are found. The resulting requirement that A must  be 
positive was mentioned above. The point having 
Cartesian coordinates ( 2 B / A , 2 C / A , 4 D / A )  must  lie 
inside the same tetrahedron as for (r,s,t). 

If A, B, C, D satisfy (14), we can compute a z, r, s, t 
from (7)-(10).  Conversely,  if a z is positive and (12) is 
satisfied, we can compute A, B, C, D; it can be shown 
that the solution for A, B, C, D exists and is unique. 
The computat ions  leading from A, B, C, D to a 2, r, s, t 
and vice versa are described in the Appendix.  When  A, 
B, C, D are known we can compute further properties 
of the model, as described in the following sections. 

respect, our two-dimensional  model is somewhat  
simpler than the Ising model,  in which the number  of  
definite integrals involved in the formula  for a corre- 
lation coefficient increases with I ml and I nl (Montroll,  
Potts & Ward ,  1963). The correlation coefficient for 
our model can be written as 

1 '~ 
- f exp (im2)[exp (ipa)] J''' Pm,n 27~0.2 

x [(A + 2B cos 2) 2 - 4 (C + 2D cos 2)2] -1/2 d2, 

where (15) 

exp (i/aa) = { - (A + 2B cos 2) + [(A + 2B cos 2) 2 

-- 4(C + 2D cos 2)2] u2} 

x [2(C + 2D cos 2)] -x. 

If  m 2 + n 2 is not very large, numerical  integration of  
(15) is feasible, and we have used a Gauss ian  
quadrature scheme to explore the correlation field. In 
the special case of A D  - B C  = 0, the denominator  in 
(6) becomes 

A[1 + ( 2 B / A )  cos 2][1 + ( 2 C / A )  cos/t] ,  

and the double integral is easily evaluated. We find 

( X ~ . X o o )  = a 2 r 'm' s'"' = a 2 Pro.,, (16) 

where r is a function of B / A  and s is a function of C / A .  
Using these functions, we obtain 

(1 + r  2)(1 + s  z) 
A =  

tr2( 1 -- r 2) ( 1 -- s 2) 

--r(1 + s 2) 
B =  

02( 1 -- r 2) ( 1 - s 2) 
(17) 

--s(1 + r 2) 
C =  0"2( 1 -- r 2) ( 1 -- s z) 

rs 
D =  

o'2( 1 - r 2) ( 1 -- s 2) 

Note that (16) implies t = rs. Hence, t :/: rs implies A D 
- B C  4= O. It can be shown that A D  -- B C  and t - rs 
always have opposite signs. 

So far we have described the statistical properties of  
the Gauss ian  model without reference to particular 
diffraction applications. In the sections that follow we 
describe two such applications. The first was chosen 
primari ly for its simplicity and the second because of its 
relevance to the 'paracrys ta l '  problem. 

3. Correlation coefficients 

The correlation coefficient ( Xm, , Xoo) /tr 2 = Pm.n is given 
by (6) or the corresponding double integral. In this 

4. Random form factors 

We suppose that we have an atom at each site of  a 
square lattice, and that the atomic form factors are 
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random variables having a multivariate Gaussian 
distribution. This model is a simple and concrete 
application of the Gaussian model described above. In 
this section, we consider this simple model, and obtain 
an explicit formula for the diffracted intensity. 

Suppose that ! is a vector, with integer components 
m and n, from the origin to a lattice site, and that ft is 
the corresponding random form factor. The intensity of 
scattered waves is 

IX f exp[i(Q. 1)112 
l 

= ~. X fro, fro',' exp[iax(m - m') 
m?l  m ~  ?l ' 

+ iQy(n - n')], 

where Q is the scattering vector with components Qx 
and Qy,  and we assume f is real. Since our Gaussian 
model has translational symmetry, the average intensity 
is proportional to 

I(Q) = ~. (f,,,.foo} expli(Qxm + Qyn)]. 
m , n  

The average appearing here can be written as 

( ( f ) )2  + ((f, , , , ,_ ( f ) ) ( f o o - -  ( f ) ) ) ,  (18) 

because ( f . , . )  = ( f }  is independent of m and n. The 
first term in (18) corresponds to Bragg diffraction, and 
we set the second term equal to (X,,,nXoo), given by 
(6). The resulting intensity of diffuse scattering is 

X-' exp[i(Qxm + Qyn)] 
I ( Q ) d i f f  = /__., N 

m , n  

x ~ ~ exp [i(m2 + n/z)](A + 2B cos 2 
a u 

+ 2C cos # + 4D cos 2 cos/t) -~. 

We need evaluate this quadruple sum only for very 
large lattices, for which the allowed values of 2 and/z 
have arbitrarily small spacing. We assume that Qx and 
Qy are equal to allowed values of )t and/t respectively, 
which simplifies the sums over m and n. Then the sums 
over 2 and/z are easily performed, and 

I(Q)dirr = [A + 2B cos(Qx ) + 2C cos(Qy) 

+ 4D cos(Qx) cos(Qy)]-L (19) 

This result is exact in the limit of an infinite lattice. The 
conditions (14) now appear as conditions that I(Q)avr is 
always positive. If A + 2B + 2C + 4D is relatively 
small, the diffuse intensity is greatest near the Bragg 
peaks. 

We have chosen a set of five realizations to illustrate 
this simple model. Four of these were obtained by 
Monte Carlo procedures and one obtained by growth- 
disorder model construction. Small representative 
portions of the diffraction masks derived from these 
realizations are shown in Fig. 2. For the purposes of 
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Fig. 2. Small  portions o f  lattice realizations o f  the Gauss ian model  
with (a) r = s = 0 .4  and (b) r = s = - 0 - 4 ,  for different values o f  
the diagonal  correlation t. The realizations shown were obtained 
from the original variable density realizations by putting a 'dot' 
to represent densities greater than average and a 'blank' to 
represent those  less than average. See text for details. 
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illustration we have converted the Gaussian variables 
to binary ones in the manner described by Welberry & 
Carroll (1982), since realizations in which the scatter- 
ing points varied in density gave poor reproductions. In 
Fig. 2, therefore, the 'dots'  represent atoms with 
above-average scattering power while 'blanks'  represent 
atoms with below-average scattering power. The 
diffraction patterns shown in Fig. 3, however, were 
obtained from the Gaussian variable-density 
realizations themselves. 

For the purpose of this illustration we chose the 
series r = s = 0.4, and reference to (12) indicates a 
possible range of - 0 . 2  < t < 1.0. Since the 
growth-disorder case lies closer to the lower end of this 
range we chose one example below it and three above 
it. The values of A, B = C, and D, together with some of 
the low-order correlation coefficients obtained via (15) 
by numerical integration, are given in Table 1. In Figs. 
2 and 3 we also give examples for r = s = - 0 . 4 .  These 
could have been obtained by reversing the signs of B 
and C in the Monte Carlo procedure but were in fact 
obtained by reversing the signs of the random variables 
of the corresponding r = s = 0-4 cases for lattice points 
such that m + n is even. Similarly available without 
further Monte Carlo work would be the cases r = 0.4, 
s = - 0 . 4  and r = - 0 . 4 ,  s = 0.4, by changing the signs 
of the random variables in alternate columns or rows. 

For both positive and negative series, the diffraction 
patterns change dramatically over the range of  t 
illustrated. In one extreme the diffuse 'peak '  appears to 
be little more than the intersection of two diffuse bands 
of almost uniform intensity along their length. At 
t = 0.3 the diffuse peaks are much more rounded and 
appear as distinct peaks with no sign of connecting 
diffuse bands. Between these values there is a gradual 
change including the growth-disorder case which, while 
exhibiting distinct 'peaks' ,  nevertheless shows some of 
the diffuse banding along the axial directions. For 
t = 0-5 the diagonal interaction dominates and the 
appearance of extra diffuse peaks corresponding to the 
repeat  in the two sublattices (m + n even and odd) 
suggests that a description in terms of these two sub- 
lattices is more appropriate in this case, with a weaker 
interaction connecting them. 

The rounded appearance of the peaks in the t = 0.3 
cases leads us to consider the question of isotropy. 
Because of the fact that the distribution is based on a 
square lattice, no truly isotropic distribution can result, 
but various criteria for approximate isotropy can be 
formulated. We have used three different criteria. For 
the first two we choose t to make Pro,, into a function of 
m 2 + n 2 such that there are alternative correlation 
coefficients. The first such value is m 2 + n 2 = 25. The 
corresponding criterion, P4,3 = Ps,0, is useful because 
one of these correlations is along the axis and the other 
approximately along the diagonal. In Table 1, we 
include the ratios of these two correlation coefficients. 
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Fig. 3. Optical diffraction patterns obtained from the variable- 
density realizations of the Gaussian model with (a) r = s = 0.4 
and (b) r = s = -0.4, for different values of the diagonal 
correlation t. See Table 1 for parameters. 
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Table 1. Parameters used to generate the realizations shown in Fig. 2 

Also given are values o f some low-o rde r  correlation coefficients pm,n, and the ratios used to tes t isotropy,  ps,o/P4,3 and B/D.  

A B = C  D 1 0 1 1 2 0 2 1 2 2 ps,o/p<s B / D  

3.74872 -1.71795 0.86259 0.4000 0.0000 0.2336 -0.0408 -0-0363 -22.538 -1.9916 
1.90703 -0.65760 0.22676 0-4000 0.1600 0.1600 0.0640 0.0256 6.250 -2.9000 
1.73823 -0.52407 0.12535 0.4000 0.2000 0.1644 0.0969 0.0529 !.560 -4.1809 
1.56888 -0.29349 -0.08275 0.4000 0.3000 0.2095 0.1830 0.1331 0-998 3.5467 
1.93502 -0.07549 -0.40712 0.4000 0.5000 0.3884 0.3292 0.3292 0.993 0.1854 

An alternative use of Pm,n values as a criterion for 
isotropy is based on analytic evaluation of the 
behaviour of (15) as m 2 + n 2 --, m. This involves a 
saddle-point approximation; mathematical details are 
omitted. 

A third criterion for isotropy is based on (19). We 
require the diffuse scattering to have circular peaks 
centred at each Bragg peak. Since (19) is a periodic 
function of Qx and Qy, the origin peak is typical. Near 
Qx = Qy = 0, the denominator becomes 

( A + 2 B + 2 C + 4 D ) - ( B + 2 D ) Q 2  x 

- (C + 29)  02 +.. .  etc. 

This power series shows that the small-angle scattering 
can be isotropic only if B = C. If we also make B = 4D 
the denominator in (19) becomes 

A + 5B 3 2 l 2 2 2 (20) - - :B(Q x + Q~) + ~B(Qx + Qy) + ..., 

and the diffuse scattering is as isotropic as possible 
within this model. The higher terms not shown 
explicitly in (20) cause a slight anisotropy. The ratios of 
B/D are included in Table 1. 

In the present example of r = s = 0.4, these three 
criteria for isotropy give values of t differing by less 
than 0-001. These three values of t are close to 0.30, 
for which the diffraction pattern is shown in Fig. 3, and 
for which the peaks are clearly approximately iso- 
tropic. Calculations of the correlation coefficients show 
that the deviations from isotropy are smaller for t = 0.5 
than for t = 0.2. This is also shown by the diffraction 
patterns in Fig. 3. 

5. Random displacements 

In our second application of the Gaussian model, one 
atom is associated with each site of a square lattice, and 
the displacements of atoms from their lattice sites are 
random variables. We assume that the horizontal 
components of the atomic displacements are 
statistically independent o f  the vertical components, 
and we use two separate realizations of our multi- 
variate Gaussian model for these components. The 
resulting intensity of diffuse scattering is discussed in 
this section. The growth-disorder special case of this 
model was discussed by Welberry, Miller & Carroll 
(1980) and Welberry & Carroll (1982). 

We again suppose I is a vector from the origin to a 
lattice site; it has integer components m and n. The 
corresponding atomic position is I + d, and the atomic 
form factor is unity. Because of the translational 
invariance of the statistical properties, we define the 
intensity function as 

I ( Q ) =  Z expIiQ.I] (exp[iQ. ( d / - d o ) l  ). 
l 

Since Q. (d I - d 0) is a Gaussian random variable with 
zero mean, this becomes 

I ( Q ) =  Y. e x p { i Q . I -  ½([Q. ( d / -  d0)lS)} 
l 

= exp(--2W) • exp[iQ.I + ( (Q.  dr) (Q. d0))l. 
1 

The Debye-Waller factor, exp ( - 2  W) = 
exp [ - ( (Q ,  d0)2)], depends on the mean square of the 
atomic displacements. The variances in our Gaussian 
model are a s = (Xo2o) = (Y~oo), and this gives 
e x p ( - 2 W )  = exp[-(Q2x + Q2)02]. The Bragg com- 
ponent of the intensity is 

I(Q)Bragg = e x p ( - 2 W )  Z exp(iQ.l). 
! 

The diffuse component of the intensity is 

I(Q)difr = exp(--2W) Y. exp(iQ.l)  
l 

x {exp[((Q.dt)(Q.do) )] -- 1}, (21) 

and 

Q x(Xm. s ( (Q.d)  (Q.d0)) = Xo0) + Qy(rm, roo). 

We assume that the primary correlation coefficients r 
and s are associated with longitudinal and transverse 
correlations of atomic displacements, respectively. This 
means that the horizontal correlations of the Y 
variables are the same as the vertical correlations of the 
Y variables and that (Ym,,Yoo) = (XnmXoo). The 
covariances (Xm,,Xoo) are given by (6). Use of the 
power series for the last exponential function in (21) 
gives 

1 
I(Q)dlff = exp(--2W) Z ~.v Z exp (imQx + inQy) 

P = I  m,n 

1" 
, A + 2 B c o s 2 + 2 C c o s g + 4 D c o s 2 c o s g ] "  

(22) 
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Table 2. Parameters used to generate the real&ations shown in Fig. 4 

Also given are values o f some low-o rde r  correlation coefficients pm,n, and the ratios used to test isotropy,  ps,o/P4,3 and BID. 

A B = C  D 1 0 1 1 2 0 2 1 2 2 ps,o/P4,3 B / D  

90.75069 -45-12465 22.43767 0.9000 0.8100 0.8100 0.7290 0.6561 1.2346 -2.0111 
13.86128 -5.39596 1.93064 0.9000 0.8500 0.8356 0-8100 0.7848 1.0077 -2.7949 
9.63340 -1.95010 -0.45825 0.9000 0-8800 0.8612 0.8548 0-8418 1.0000 4.2556 

10.00000 -0.94031 -1.55970 0.9000 0.9000 0.8805 0.8757 0.8683 0.9996 0.6029 
19.83720 -0.04070 -4.91860 0.9000 0.9500 0.9367 0.8990 0.9283 1.0000 0.0083 

This infinite series is a generalization of one that 
appeared in Welberry, Miller & Carroll (1980). To 
simplify each term, we evaluate the sums over m and n. 
As in the previous section, we may assume that Qx and 
Qy are equal to allowed values of 2 and ~t, respectively. 
Then two more sums can be done easily, which leaves 
2P - 2 sums in the P ' th  term. In the limit of an infinite 
lattice, the result is 

I(Q)dirr = Q~ exp ( -2W)[A + 2B cos (Qx) 

+ 2C cos (Qy) + 4D cos (Qx) cos (Qy)]-i 

+ Q~ exp ( - 2  W)[A + 2B cos (Qy) 

+ 2C cos (Qx) + 4D cos (Qy) cos (Qx)] -1 

+ ~ [exp ( -2W)/2 ! I (A  + 2B cos 2 

+ 2C cos ~ + 4D cos 2 cos ~)-~ 

× {Q4 [A + 2B cos (Qx + 2) + 2C cos (Qy +/~) 

+ 4D cos (Qx + 2) cos (Qy +/~)]-1 

+ Q4 [A + 2B cos (Qy + 2) + 2C cos (Qx + la) 

+ 4D cos (Qx +/~) cos (Qy + 2)] -1 

+ QZ x Q~ [A + 2B cos (Q~ + u) + 2C cos (Qy + 2) 

+ 4D cos (Qx + it) cos (Qy + 2)] - l  

+ QZ x Q~ [A + 2B cos (Qy +/~) + 2C cos (Qx + 2) 

+ 4D cos (Qx + 2) cos (Qy +/~)l - l  } 

(2n) 4 
- - 7  

x (terms in Q~, Q4 x Q~, QZ Q~, and Q6) + . . . .  (23) 

As examples to illustrate this displacement model we 
choose examples which are 'paracrystal-like'. This 
occurs when the standard deviation, a, is sufficiently 
large that no Bragg peaks are discernible because of the 
very small Debye-Wal ler  factor. At the same time the 
nearest-neighbour correlations are high so that the 
standard deviation of the distance between neighbours 
is still moderately small. In such cases the diffuse 
diffraction pattern reflects the local ordering with 

pronounced peaks. For further details see Welberry, 
Miller & Carroll (1980). 

For the present purposes we chose the series r = 
s = 0.9 for which t may vary from 0.80 to 1.0. The 
growth-disorder case has t = 0.81 and in addition to 
this we show four examples with t > 0.81. Difficulties 
were encountered with the Monte Carlo procedure for 
examples approaching the lower limiting value of 0.8 
and so these were not pursued. In Table 2 we list the 
values of A, B = C, D; some low-order correlation 
values; and the ratios P4,3/PS,0 and B/D for the chosen 
set of examples. Small representative portions of lattice 
realizations are shown in Fig. 4 and their corre- 
sponding diffraction patterns in Fig. 5. In Table 2 the 
values of A, B, D refer to a 2 = 1 and to obtain actual 
realizations the random numbers were scaled to the 
appropriate values as a fraction of the cell repeat. For 
example, in Fig. 4 we show realizations with two 
different values of o z for each example, which were 
obtained in this way from the same unit-variance 
distributions. 

To understand these diffraction patterns we consider 
the intensity (23), remembering that for these high 
values of a 2 we require to consider many terms of the 
summation over P of (22). In (23) we see that the 
coefficients of QZ x and Q~ in the first terms have the 
simple form (19). Since we have large values of r, s, t 
this first term will produce a contribution to the 
intensity very like one of the patterns of Fig. 3 but with 
much sharper peaks. The second group of terms in 
(23), involving Q4 x, Q4, and Q~ Q~, are convolutions of 
two functions of the form (19). Thus, each of these 
terms represents a function in which the sharp peaks of 
the first term have been smeared somewhat, but 
nevertheless having a similar overall periodic distri- 
bution. Further terms not given explicitly, involving 
integrals of a higher multiplicity, consist of even more 
greatly smeared versions of the basic intensity function 
(19). 

Finally we consider the variation with Q. At 
sufficiently small Q the first term dominates, but in our 
present example this will only occur at values of Q 
which are very small fractions of 2n. At higher values 
of Q the contribution of the Pth term is weighted by 
factors depending on Qe and l /P! .  For any given Q the 
contribution of the P ' th  term eventually falls rapidly 
with increasing P, but the higher the value of Q, the 
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standard deviation of  the displacements expressed as a fraction of  
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more terms are required. Thus at low diffraction angles 
the more highly peaked distributions dominate the 
pattern while at progressively higher angles the more 
highly smeared distributions take over. This result is 
familiar in the context of paracrystals. 

Many of the t-dependent features of the simple 
example illustrated in Fig. 3 are also apparent in the 
diffraction patterns of Fig. 5. Notable is the greater 
isotropy of the diffuse peak shapes at the higher values 
of t, and the accompanying sharper peak profiles. For 
this series the most isotropic case according to the 
criteria listed in § 4 occurs close to t = 0.880 and, while 
the diffuse peaks for this case and the t -- 0.9 case 
appear little different, the greater isotropy is evident in 
the shape of the dark region occurring at low 
diffraction angles. In the growth-disorder case which 
approximates the 'ideal paracrystal' the characteristic 
'maltese-cross'-shaped appearance of the low-angle 
scattering is very evident. This feature was prominent 
in the discussion of the paracrystal model by Br~imer & 
Ruland (1976). 

6. Monte Carlo simulations 

The standard Monte Carlo technique devised by 
Metropolis, Rosenbluth, Rosenbluth, Teller & Teller 
(1953) generates a Maxwell-Boltzmann distribution. 
To apply it, we regard the exponential function in (5) as 
the Boltzmann factor. The computation proceeds as 
follows. We first set up an initial array of Gaussian- 
distributed random variables of unit variance and zero 
correlations (or we use a realization from a previous 
run). One point in the array is chosen at random and 
the random variable at that site adjusted by a small 
random shift. The energy of this new configuration is 
then compared to the old. If the new configuration is of 
a lower energy this configuration is certainly accepted, 
but if it is higher in energy it is only accepted with a 
probability of exp(--AE/kT), where ,dE is the energy 
difference. A new point in the array is then chosen and 
the procedure is repeated. At each iteration the 
computation of ,dE/kT from (5) requires use of the 
eight random variables surrounding the point con- 
sidered. Many iterations are required to achieve 
equilibrium and it is convenient to refer to a 'cycle of 
refinement', by which we mean the number of iterations 
required to access, on average, each point in the array 
once. 

Since distant variables separated by, say, n cell 
vectors cannot possibly influence each other in less 
than n cycles of refinement, the amount of com- 
putation necessary depends on the magnitude of the 
correlations required. Thus, for the examples of Figs. 2 
and 3 where the short-range order extends only a few 
lattice spacings about 20-25 cycles were performed. 
On the other hand, for the examples of Figs. 4 and 5 

which involve much higher correlations a much larger 
number of cycles (>100) was employed. Progress of 
the refinement was monitored by calculating the lattice 
averages (3) after each cycle. Also monitored was the 
acceptance/rejection ratio for the new configuration, 
and on subsequent cycles the magnitude of the random 
shift was adjusted accordingly to obtain an acceptance 
ratio close to 0.5. During refinement, when the 
configuration was still some way from equilibrium, we 
found there was a tendency for the variance of the 
random variables to drift away from unity. After each 
cycle this was corrected by renormalization of the 
variables, and as equilibrium was approached the 
tendency disappeared. 

The experiments were performed on an array of 
512 x 512 points, to be consistent with earlier 
growth-disorder realizations. Periodic boundary con- 
ditions were imposed. Since it was not feasible to store 
such a large array in computer memory, a procedure 
was adopted whereby a subarray of 70 x 70 points was 
selected at random from the main array which was 
maintained on a disk. After a cycle of refinement on 
this subarray, it was returned to the disk and a further 
subarray selected. In this way it was possible to obtain 
realizations using only our PDP 11/45 minicomputer. 

In order to check the validity of the computer 
program and the criteria for equilibrium, we performed 
Monte Carlo runs using the parameters for the 
growth-disorder model case r -- s -- 0.9, t = 0.81. The 
realizations obtained, while evidently still a little way 
from achieving the true equilibrium of the growth- 
disorder model construction, nevertheless gave diffrac- 
tion patterns barely distinguishable from those of the 
latter. We thus have reasonable confidence that the 
diffraction patterns we have obtained truly reflect the 
properties of the Gaussian model. 

The optical diffraction masks of lattice realizations 
were produced from the final array of Gaussian 
variables using an Optronics P-1700 Photomation 
system (see Harburn, Miller & Welberry, 1974). In all 
cases the basic grid used was a 200 x 200 jam square. 
For the variable-density realizations used to obtain the 
diffraction patterns of Fig. 3, lattice points were plotted 
with a mean optical density of 127 on a scale where 
255 represents the maximal optical density of about 
2.4D. The standard deviation used was 40 units so that 
variables within about 3or of the mean were satisfactorily 
represented. The small number of variables outside this 
range were given a zero or a maximum density. For the 
displacement realizations of Fig. 4, each point was 
positioned to the nearest 12.5 /am, the basic raster size 
of our Photomation system. 

7. Discussion 

The properties of the multivariate Gaussian model 
which we have described in this paper have enabled us 
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to place in context the crystal growth-disorder models 
which have been of particular use in generating 
realizations of disordered lattice distributions for 
optical diffraction analogue experiments of disorder 
problems in real crystals. Our experiences in the 
present work have reaffirmed that, for the size of sample 
that is required for this purpose, the generation of 
realizations by growth-disorder algorithms is at least 
two orders of magnitude quicker than use of the Monte 
Carlo procedures which are necessary for the more 
general cases. Nevertheless we have found that the 
extra degree of freedom afforded by the general model 
allows considerable further diversity in the diffraction 
patterns. 

At this stage it is not clear which examples of the 
general model might correspond most closely to real 
crystal situations. It would appear that the more 
extreme of the permissible values of the diagonal 
correlation, t, might correspond to situations where the 
model could well be reformulated more simply on a 
different lattice, but despite this there still remains, for 
intermediate values of t, a range of models, and it is 
unclear which is the most suitable for emulating real 
disorder problems. Our experience with orientational 
disorder in molecular crystals suggests that when the 
primary correlations in two different directions are 
approximately equal in magnitude, the peaks in the 
disorder diffuse scattering have a more rounded 
appearance than those given by a growth-disorder 
model. Such was the case, for example, in the Okl 
section of 0rthorhombic 9-bromo- 10-methyl- 
anthracene (Welberry, Jones & Epstein, 1982). For this 
reason we believe that models closer to that for which 
the isotropy condition is satisfied might be more 
appropriate than the growth-disorder case. For 
situations where the primary correlations, r and s, are 
not equal, a simple extension of the isotropy ideas of 
§ 4 could be to suppose that the correlations are a 
function of am 2 + fin 2 where a and fl are positive 
constants. 

From the point of view of interpreting real X-ray 
diffraction patterns an important consideration is the 
effect of the choice of model on the estimation of the 
primary correlations. A number of workers, e.g. Flack 
(1970), Glazer (1970), have used a measurement of 
peak width at half-height to estimate short-range-order 
parameters; a method described by Wilson (1962). 
This method relies on the characteristic peak profile 
shape which results from geometrically decaying 
correlations. Such geometric correlations are valid for 
simple one-dimensional nearest-neighbour problems or 
for our growth-disorder model, but are not generally to 
be expected for two- and three-dimensional problems. 
In particular we note from the present work that 
correlations decay more slowly for the isotropic case 
than for the growth-disorder model with the same r and 
s. This results in a sharper peak profile, and its analysis 

assuming the standard peak profile would give erron- 
eous results for the primary correlations. A second 
point that is relevant here is that the 'peak profile' 
should strictly refer to the projection of the diffuse 
scattering distribution onto a line in reciprocal space. 
Estimation of peak widths by taking a section through 
the diffuse peak, as for example done by Singh & 
Glazer (1981), will again lead to erroneous estimation 
of nearest-neighbour correlations unless the corre- 
lation field is geometric, since the measured reciprocal 
section corresponds to a projection of the correlation 
field onto a real-space axis. 

In § 5 we have used the general Gaussian model to 
explore the generalization of the paracrystal-like 
lattices described in Welberry, Miller & Carroll (1980). 
Here too the question of which of the range of possible 
models is most appropriate must be considered by 
those working in the field. Some of the draw-backs of 
the 'ideal paracrystal', which is closely related to the 
growth-disorder-model special case of the present 
model, may be removed by moving to more isotropic 
examples of the model. In particular we note that the 
pronounced streaking in the axial directions at low 
angles is removed in examples away from the growth- 
disorder case. On the other hand, adoption of a more 
isotropic model would certainly alter the details of the 
interpretation of diffuse peak shapes to obtain 
neighbour statistics. 

In conclusion we suggest that the present work 
indicates that while growth-disorder models in their 
present form remain useful in simulating disorder 
effects because of their rapid and simple use, sufficien- 
tly large differences in the form of the correlation field 
may exist in real crystals that their use may not always 
be appropriate for anything other than qualitative 
work. We would expect the appropriateness to be 
greatest, either when the problem involves basically 
one-dimensional disorder with only minor per- 
turbations in other dimensions, or when the corre- 
lations involved are relatively small. In a previous paper 
(Welberry & Carroll, 1982) we have described ways in 
which growth-disorder models may be combined to 
produce a greater diversity of lattice realizations. While 
that work did not reveal ways in which the correlation 
field could be given the sort of isotropic properties 
found possible here, we are at present working on ways 
by which this may be achieved. 

We are grateful to K. Owen for technical assistance. 

A P P E N D I X  

The computation of 0 2, r, s, t as functions of A, B, C, D 
and vice versa is based on equations (7)-(10). In this 
Appendix, we outline how these four integrals are 
evaluated, and how the resulting equations are solved 
for A, B, C, D. 
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The integrals (15) are complete elliptic integrals and 
can be reduced to normal form by standard sub- 
stitutions; see a treatise such as Byrd & Friedman 
(1971). We may assume A D  - B C  4= O, for the 
growth-disorder case treated in § 3. We shall assume 
D 4= 0, and use 

A + 2Br  + 2Cs + 4 D t  = I/o .2 (A1) 

to evaluate t. Thus we reduce only (7), (8) and (9) to 
known functions. The first of these integrals is 

or2= (A + 2B -7- 2C -T- 4D) -1/2 

× (A - 2B + 2C ¥ 4D) -U2(2K/n ) .  (A2) 

The upper sign applies if t > rs and the lower sign if 
t < rs. K is the complete elliptic integral of the first 
kind, which can be written as 

Do 

K = ½  ] [u(u + 1)(u + k'Z)l-VZdu. (A3) 
0 

The complementary modulus is 

k r - 

I (A + 2B + 2C + 4 D ) ( A  - 2 B -  2C + 4 D ) I  +-1/2 

(A + 2 B - 2 C - 4 D ) ( A - 2 B + 2 C - 4 D )  

We now treat (8), which involves the complete elliptic 
integral of the third kind. Equations (7) and (8) give 

oo 
r + 1 = ( R / K )  f (u + R) - l [ u ( u  + 1)(u + k'2)] -u2du, 

0 

(A4) 

where R = (A -- 2B  -7- 2C + 4 D ) / ( A  + 2B ¥ 2C ¥ 
4D). Interchange of B and C gives 

Do 
s + 1 = ( S / K )  f (u + S ) - I [ u ( u  + 1)(u + k '2)] - l /2du,  

0 

(AS) 

where S = (A ¥ 2B - 2C + 4 D ) / ( A  g 2B + 2C ¥ 
4D). Equations (A1)-(AS) provide the means for 
computing o 2, r, s, t as functions of A, B, C, D. The 
integrals in (A4) and (A5) are in one of the Zill-Carlson 
(1970) normal forms for elliptic integrals of the third 
kind. The integrals in (A3), (A4) and (A5) can 
conveniently be evaluated by the Carlson (1979) 
algorithms, which are available as NAG Fortran 
routines. 

In the converse problem, it is convenient to compute 
k', R, S as functions of r, s, t before computing A, B, C, 
D. For any fixed values of r, s and k', (A4) and (A5) 
can be solved for R and S; we have used a rapidly 
convergent form of Regula Falsi (Dowell & Jarratt, 
1972) to do this. Then an equation derived from (A 1) 
can be used to compute t. The target value of t is 
subtracted from the computed value, and this whole 

procedure is repeated for a different value of k'. 
Another use of Regula Falsi leads to the correct value 
of k'. Finally, we compute A, B, C, D, using 

A = 

B = 

(k '2 + R + S + R S )  K 

2 7ra2( R S ) l/2 

(k '2 - R + S - R S )  K 

4 ~zcr2( R S ) 1/2 

C =  

D = 

(k '2 + R -- S - R S ) K  

4na2(RS)l /2  

(k '2 - R - S + R S )  K 

8naE(RS)l/2 

if t > rs, and 

A = 

B = 

[k'2(1 + R + S)  + R S ] K  

2ha 2 k ' ( R S )  1/2 

[k'2(1 - R  + S ) -  R S ] K  

4nor 2 k ' ( R S )  u2 

C =  

D = 

[k'2(1 + R -- S ) -  R S ] K  

47~cr 2 k' ( R S)  1/2 

[k':(1 - R -- S)  + R S ] K  

8nor 2 k'  ( R S )  1/2 

if t < rs. 
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Abstract 

'Symmetrized' components are introduced in place of 
the standard ones to improve the method presented in 
paper I [Fumi & Ripamonti (1980). Acta Cryst. A36, 
535-551]. These components, which are simply related 
to the standard ones, allow a further reduction of the 
computational task and also a further simplification of 
the results and of their use. This is illustrated by 
application to general two-dimensional tensors of ranks 
6 and 8 and by particularization of the results to the 
cases of the third- and fourth-order elastic tensors. 

Introduction 

In this paper we introduce symmetrizations in tensor 
space with respect to the standard reference directions 
x and y, perpendicular to the principal symmetry axis 
along the z direction, to improve the method presented 
in paper I (Fumi & Ripamonti, 1980a). From I such 
symmetrizations allow a further splitting of a tensor 
invariant in group 3(3z) into independent subtensors: 
this splitting is additional to the standard ones (see I, 
§ 3b) already exploited by the method and concerns 
only subtensors of even rank in x and y. 

* Supported in part by a NATO Research Grant. Part of the 
'Tesi di Perfezionamento in Fisica' to be submitted by C. Ripamonti 
to the University of Genoa. 

t We refer the reader to Paper I (Fumi & Ripamonti, 1980a) for 
the details of the method and for the pertinent notations. 

1. Symmetrized components 

(a) Definition and splitting 

For subtensors of even rank in x and y, we introduce 
symmetrizations with respect to x,y exchange by 
defining 'symmetrized components' as follows: 

c + = c + ? (1)  

and 

c - = c - Y  (2) 

for every pair of standard components c and ? related 
by an x,y exchange. From the identity - except for sign 
- of the coefficients of c and ? in the tensor invariants 
for group 3(3z) in Hermann's base [see I, § 3c and 
Appendix (iii)], it follows that the c+'s and c-'s have 
non-zero coefficients only in disjoint sets of invariants 
as follows: 

c+'s of even rank in x 
and in y (even parity 
in x and in y), 

Re-type invariants of 
the n+ = n_ mod 4 
subtype 

c-'s of even rank in x 
and in y, 

Re-type invariants of 
t h e n + 4 : n  mod4 
subtype 

c+'s of odd rank in x 
and in y (odd parity 
in x and in y), 

Im-type invariants of 
the n+ 4: n_ mod 4 
subtype 

c-'s of odd rank in x 
and in y, 

Im-type invariants of 
the n+ = n_ mod 4 
subtype. 

(3)  

(4) 

(5)  

(6) 
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